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Ahstruct 

Iwata, S.. The Othello game on an n x n board is PSPACE-complete, Theoretical Computer Science 

123 (1994) 329-340. 

Given an arbitrary position of the Othello game played on an nxn board, the problem of 

determining the winner is shown to be PSPACE-complete. It can be reduced from generalized 

geography played on bipartite graphs with maximum degree 3. 

1. Introduction 

The complexity of generalized versions of popular games and puzzles has been 

studied. The problems of determining the winner are shown to be exponential-time 

complete for generalized Chess [4], Checkers [lo], Go [9] and Shogi [l]; the 

problems of determining the winner are PSPACE-complete for generalized Hex [3,8] 

and Gomoku [7]; and the problem of determining whether there is a solution in 

generalized Hi-Q (peg-solitaire) 1121 is shown to be NP-complete. 
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Fig. 1. Initial position of the Othello game. 

The generalizations are natural in the sense that the board is extended by planar 

n x n locations, the spirit of the game is preserved, an arbitrary position of each game 

or puzzle is given, and no further rules are modified. 

We consider the game of Othello, one of the popular games in the world. Othello is 

played by two players, Black and White, on a board of 8 x 8 locations called squares. 

Initially, black and white markers are placed on the board as shown in Fig. 1. The two 

players play alternately and Black plays first. Each player in turn moues by placing 

a marker of his color on a vacant square so that the opponent’s markers are placed 

between the player’s two markers either horizontally, vertically or diagonally. The 

enclosed opponent’s colored markers are changed to the color of the player’s markers. 

If there is no square upon which a player can place his marker in order to put his 

opponent’s in between, then the player should pass his move. If both the players pass, 

then the game is over and the winner is the player having more markers of his color on 

the board. 

The generalized Othello problem is one to determine whether Black can win 

in a given arbitrary Othello position on an n x n board. In this paper we will show 

that the generalized Othello problem is PSPACE-complete. In order to show that 

the problem is PSPACE-hard, we establish a polynomial-time reduction from a 

restricted version of generalized geography. Generalized geography [ 11,6,5] is 

a game played by two players, j-player and V-player, on the nodes of a given directed 

graph. The j-player is the first player and first places a marker on a given distin- 

guished node. Then players alternately put a marker on any unmarked node v to 

which there is an edge from the last node played to 0. The first player who cannot 

move loses. 

Theorem 1.1 (Lichtenstein and Sisper [6]). Generalized geography played on a given 

bipartite graph with maximum degree 3 is PSPACE-complete. 
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The object of this paper is to prove the following theorem. 

Theorem 2.1. The generalized Othello problem is PSPACE-complete. 

Proof. For a given n x n board, the game must end after at most n2 steps by two 

players. Thus the problem can be computed by an alternating Turing machine [2] 

within polynomial time. By [Z], the generalized Othello problem is in PSPACE. 

We show a polynomial-time reduction from generalized geography played on 

a bipartite graph with maximum degree 3. Let G = (X, Y, E) be a bipartite graph with 

nodes as follows: 

(type 1) both indegree and outdegree one, 

(type 2) indegree two and outdegree one, or 

(type 3) indegree one and outdegree two, 

and let XEX be a distinguished node. Without loss of generality, we may assume that 

x is of type 3. 

From G and x, we construct an Othello position such that the j-player has a winning 

strategy in generalized geography if and only if Black has a winning strategy from the 

constructed position of the generalized Othello game. Black plays first in the con- 

structed game. The overall position on the board is shown in Fig. 2. There is a 

large region of unguaranteed white territory which is a collection of white 

markers. The territory is so large that the player who obtains the territory as his own 

will win the game. Note that the lower right corner of the board is blank. We call this 

corner 6. Also note that the left-adjacent squares of the unguaranteed white territory 

are blank. 

Lemma 2.2. Suppose that a’, /I’, y’ and 6 are left blank. If Black could place his marker 
on at least one of x, /I and y in his turn, then Black wins the game. If White could place 
white markers on all of CI, /I and y, then White wins the game. 

Proof. Assume that Black places his marker on r (fi, y) during his turn. Then Black 

can put his marker on E’ (b’, y’, resp.), and thus on 6 in at most three moves by Black. 

White cannot prevent these moves by Black. Once Black places his marker on 6, he 

can change the white markers of the unguaranteed white territory into black ones by 

putting black markers along the leftmost edge of the territory one by one in the lower 

left-hand corner first. Since Black obtains the unguaranteed white territory, Black 

wins the game. 

Assume that White places three markers on c(, /?, y. This prevents Black from putting 

a black marker on 6, and White can obtain the unguaranteed white territory as his 

own. Thus White wins the game. q 
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Fig. 2. Constructed Othello position. 
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Fig. 3. Abbreviation. 

We call the vertical line furthest to the right of the board column C1, the left- 

adjacent line to C1 column Cz, and the left-adjacent line to CZ column C,. The 

Black-winning route consists of some horizontal lines of white markers and connects 

the simulation area with Cj. We call each of those horizontal lines of white markers 

a Black-winning line. We use an abbreviation shown in Fig. 3(a) for Fig. 3(b). The 

arrow of Fig. 3(a) used in the construction is directed to the right of the board. 
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A critical square contains a white marker on a Black-winning line and there is a white 

marker on the left of the square. For example, the square of a white marker u of 

Fig. 3 is critical. A Black-winning line may be continued to the left of the left-adjacent 

square of U. A normal play by Black is a move to change one or more white markers of 

critical squares into black. A normal play by White is a move to change the black 

markers of critical squares into white. 

Lemma 2.3. Black or White loses the game if he does not play normally. 

Proof. Assume that Black does not play normally. Then White can win the game by 

putting white markers on 2, p, y in White’s next three moves. At least three moves are 

required for Black to place his marker on one of x, /I and y to prevent these moves by 

White, since (1) Black makes a white marker on a critical square into black, (2) Black 

makes a white marker on column C, into black and (3) Black puts his marker on one 

of c(, p and y. During Black’s three moves, White can put his three markers on CI, p 

and y. From Lemma 2.2, White can win the game. 

Suppose that White does not play normally. By the previous normal play by Black, 

there is a black marker on a critical square. Assume that a white marker u of Fig. 3 was 

changed to black previously. Black can win the game by the following moves: (1) 

Black puts his marker on v of Fig. 3(b) which is on column C,; then the markers 

positioned between u and v become black. Since there is a white marker to the right of 

v and a white marker to the left of u, White cannot change the black marker on 

column C3 in the next move by White. (2) Black puts his marker on at least one of cx, /I 

and 7. No two moves by White can prevent Black from making one of these three 

moves. By Lemma 2.2, Black can win the game. 0 

From the above lemma, every Black and White move in the constructed game is 

forced during the course of the simulation of the geography game. Each move of 

generalized geography is simulated by some pairs of Black and White moves. In what 

follows we construct Othello positions shown in Figs. 4-7 for each node of the 

geography graph. We call the Othello position a conjiguration for the node. Each 

configuration contains entry square(s) (shown by P and P’) and exit square(s) (shown 

by Q and Q’). The entries and the exits are left blank initially, unless stated otherwise. 

If there are no markers on entries and exits, then the configuration is called initial. If 

there is a white marker on one of the entries then the configuration is activated. 
Assume that it is Black’s turn to move from the configuration just after it is activated. 

At most one configuration is activated during the simulation of the geography game. 

Starting from an activated configuration, if no normal play is possible after some 

nomal plays made by Black and White, then the configuration is called deactivated. 
We present configurations and normal plays in each of the configurations below. 

The reader may proceed by examining the following: 

(1) Once a configuration is activated, normal plays are only those explained 

below. 
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Fig. 4. Construction for a type I node, or for a connector. 

(2) A configuration is deactivated by a normal move by White which causes a white 

marker to be placed on one exit. 

(3) There is no normal play for Black from an initial configuration or from 

a deactivated configuration. 

For a type 1 node in Xv Y of the form shown in Fig. 4(a) and (b), or for a connector 

shown in Fig. 4(a)’ and (b)‘, construct configurations of Fig. 4(e) and (f), respectively. 

Suppose that there is a white marker on P and the configuration is activated. 

Black puts his marker on B1 to change u to black, and then White on WI to 

change the color of u to white. Black then puts his marker on Q to change u to black, 

and White on W,. By the last move of White, the marker on Q is changed into white. 

The configuration is deactivated and it is Black’s turn to move. Similar constructions 

are possible corresponding to each type 1 node or each connector shown in Fig. 4(c) 

Fig. 4(d). 

For a type 2 node in X of the form shown in Fig. 5(a), construct a configuration 

Fig. 5(b), where the two double-circled squares are left blank. Without loss of general- 

ity, we assume that the V-player comes from the upper left, and the configuration is 

activated by placing a white marker on P. Black puts his marker on B1 , then White on 

WI, Black on B2, White on W,, Black on Q and White on W,. Note that the 
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Fig. 5. Type 2 node. 

configuration is deactivated and that a white marker is placed on the square Q. These 

moves simulate that the V-player places a marker on a type 2 node of X in generalized 

geography. 

We say that a configuration is revisited if a white marker is placed on the 

blank entry of deactivated configuration. Assume that a deactivated configuration 

of Fig. 5(b) with no markers on double-circled squares is revisited by putting a 

white marker on P’, and that it is Black’s turn to move. Then Black wins the 

game, since Black puts his marker on B’ to change u to black and since there 

will be no normal play by White. This implies in generalized geography that once the 

V-player placed a marker on a type 2 node of X, he cannot put a marker on the same 

node again. 

For a type 2 node in Y of the form shown in Fig. 5(a), construct a configuration 

Fig. 5(b), where there are two white markers on the double-circled squares. We 

assume that the g-player comes from the upper left, and that a white marker is placed 

on P to activate the configuration. Black then places a black marker on III, White on 

WI, Black on B2, White on W,, Black on Q and White on W, . Then the configuration 

is deactivated and there is a white marker on Q. These moves correspond, in 
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Fig. 6. Type 3 node of X 

generalized geography, to the j-player putting a marker on a type 2 node of Y. If 

another white marker is placed on P’ to change the status of the configuration from 

deactivated into revisited, then Black puts his marker on B’, White on W’, and there 

will be no normal play by Black; thus White wins the game. A series of these moves 

simulate that after the j-player places a marker on a type 2 node of Y, he cannot place 

a marker any more on the same node in generalized geography. 

For a type 3 node in X of the form shown in Fig. 6(a), construct Fig. 6(b). Black 

places a black marker on Br , then White on WI, Black on Bz, White on W, and Black 

can choose either Q or Q’ to put a black marker: if Black chooses Q (Q’) then White’s 

normal play will be on W, (WA, resp.). It is again Black’s turn. This corresponds, in 

generalized geography, to the g-player selecting one of the nodes of Y to place 

a marker. 

For a type 3 node in Y of the form shown in Fig. 7(a), construct Fig. 7(b). Black puts 

his marker on Br, then White on W,, Black on B2 to change the white marker on 
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Fig. 7. Type 3 node of Y. 

B1 to black, and White can choose either W2 or W; to make the three black 

markers including B1 and B2 into white: if White chooses W, then Black places his 

marker on Q, and White on W,; and if White chooses W; then Black on Q’ and White 

on W;. The configuration is deactivated and it is again Black’s turn. This corresponds, 

in the geography game to the V-player selecting one of the nodes of X to place 

a marker. 

Assume that there is an edge from node y to node z in the geography graph. In 

order to connect the exit of the configuration for y with the entry of the configura- 

tion for z, either we identify the exit of u with the entry of z, or we may use 

connectors shown in Fig. 4. To identify the exit with the entry, it is necessary 

that a direction of the line to the exit is orthogonal to a direction of the line from 

the entry. To connect the exit with the entry using connectors, it is further required 

that the exit and the entry are in the same parity positions. Two squares located in 

(x1, y,) and (x2, y2) in the system of coordinates are said to be in the same parity 

positions if 

x1 +y, -x2+y2 (mod2). 

If their parities are different, then connect the parity changer of Fig. 8 to obtain the 

same parities. 

Each edge of the geography graph is constructed by a series of white markers placed 

in a diagonal line, and a Black-winning line is formed by white markers placed in 
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Fig. 8. Parity changer. 
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Fig. 9. Example of bipartite graph. 

a horizontal line. We note that two diagonal lines of white markers which are vertical 

may cross each other in the construction, and that both, a diagonal line of white 

markers and a Black-winning line, may cross on the board. 

We have assumed that the distinguished node x of G is in X and is of type 3. A white 

marker is placed on P of Fig. 6(b) of the configuration for x, and the configuration is 

activated. By a sequence of normal plays by Black and White, the constructed Othello 

game simulates the moves of the geography game. 

Suppose that the j-player has a winning strategy in a given geography game. 

According to the winning strategy, Black can win the Othello game. White will lose 

the game either because he does not play normally or because he enters a revisited 

configuration for a node of X. 

Assume that the V-player has a winning strategy in the geography game. At the 

beginning of the simulation of a move of the geography game, only one configuration 

is activated or revisited, and the other configurations are either initial or deactivated. 
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Fig. 10. Example of construction. 

Since Black’s play from initial configurations or from deactivated configurations is 

not normal, Black either simulates the geography game or does not play normally. 

Thus White can win the constructed game according to the winning strategy of the 

geography game. 

As an example of the construction, consider a geography game on a bipartite graph 

shown in Fig. 9 with distinguished node x. The corresponding Othello position will be 

the one shown in Fig. 10. 

The construction of the Othello position can be performed within polynomial time. 

This proves the theorem. 0 
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